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Terminal Model of Newtonian Dynamics 
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A new type of dissipation function which does not satisfy the Lipschitz condition 
at equilibrium states is proposed. Newtonian dynamics supplemented by this 
dissipation function becomes irreversible and has a well-organized probabilistic 
structure. 

1. INTRODUCTION 

Classical dynamics describes processes in which the direction of time 
does not matter: its governing equations are invariant with respect to time 
inversion, in the sense that the time-backward motion can be obtained from 
the governing equations by time inversion, t ~ - t .  As stressed by Prigogine 
(1980), in this view future and past play the same role: nothing can appear 
in the future which could not already exist in the past since the trajectories 
followed by particles can never cross. This means that classical dynamics 
cannot explain the emergence of new dynamical patterns in nature in the 
same way in which nonequilibrium thermodynamics does. That is why the 
discovery of chaotic motions (which could lead to unpredictability in class- 
ical dynamics) has shaken up the scientific community, and the number of 
publications in the area of chaos is still growing. However, is this a key to 
the problem of unpredictability and irreversibility in Newtonian dynamics? 
In my opinion, the answer is no, since "chaotic" dynamical equations do not 
"generate" randomness: they are rather driven by random initial conditions. 

Indeed, let us consider a steady laminar flow whose instability is charac- 
terized by an exponential multiplier: 

~=voe i", 0 < p < o o  (1) 
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Obviously, the solution with infinitely close initial condition 

~=vo+e ,  e ~ O  (2) 

will remain infinitely close to the original one: 

[O-v01=eeU '~0  if t ~ 0 ,  t < N < o o  (3) 

during allthe bounded time intervals. This means that random solutions can 
result only from random initial conditions when e in equation (2) is small, 
but finite rather than infinitesimal. 

The same arguments can be applied to discrete chaotic systems if the 
divergence of actual trajectories in (1) is replaced by the divergence of trajec- 
tories in configuration space. 

Thus, as in stochastic differential equations, the changes in initial condi- 
tions for chaotic equations must be finite, although they may be humanly 
indistinguishable. However, unlike stochastic equations, the phenomenon of 
unpredictability in chaotic systems has a different origin: it is caused by 
exponential amplifications of the initial changes due to the mechanism of 
instability. Indeed, if two trajectories initially are "very close" and then they 
diverge exponentially, the same initial conditions can be applied to either of 
them, and therefore the motion cannot be traced. 

But then two arguments can be brought up. First, from the mechanical 
viewpoint, stability is not an invariant of motion: it depends upon the frame 
of reference. For instance, the same inviscid flow can be stable in the Eulerian 
representation and unstable in the Lagrangian one (Arnold, 1988) or in a 
frame of reference moving with the streamlines (Zak, 1990c). This leads to 
the following question: is it possible to find such a (noninertial) frame of 
reference in which the inertia forces would stabilize the motion, i.e., eliminate 
all the positive Lyapunov exponents? The answer to that question was given 
in Zak (1985a). I introduced a specially selected rapidly oscillating frame of 
reference in which the originally chaotic motion was stabilized by inertia 
forces coupled with the motion itself. In other words, I found a frame of 
reference which provides the best "view" of the motion. However, there was 
a certain price paid for this representation: the component of the solution 
corresponding to the transport motion with the frame of reference contained 
the function sin cot, co ~ ~ ,  which is actually multivalued. Indeed, for any 
arbitrarily small interval At there always exists such a large frequency 
co > A/2Jr that within this interval the function runs through all its values. 
This means that in order to eliminate chaos one has to enlarge the class of 
smooth functions by introducing nondifferentiable functions, and that leads 
us to the second question: is chaos an invariant of motion or is it an attribute 
of a mathematical model? From the mathematical viewpoint the concept of 
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stability is related to a certain class of function, or a type of space, and 
therefore, the same solution can be stable in one space and unstable in 
another, depending upon the "distance" between two solutions. Hence, the 
occurrence of chaos in the description of mechanical motions means only 
that these motions cannot be properly described by smooth functions if the 
scale of observations is limited. These arguments can be linked to Godel's 
(1931) incompleteness theorem and the Richardson (1968) proof that the 
theory of elementary functions in classical analysis is undecidable. Indeed, 
classical dynamics, in addition to Newton's laws, is based upon certain 
assumptions of a purely mathematical nature. They restrict the class of 
functions that describe the motions to functions of sufficient smoothness. 
Such an artificial limitation, which does not follow from the axioms of 
mechanics, may become inconsistent with the physical nature of the motions. 
As shown in Zak (1974, 1982a-c, 1985a,b), these inconsistencies lead to 
instabilities (in the class of smooth functions) of the equations which govern 
turbulent and chaotic motions. 

The first step toward enlarging of the class of functions for modeling 
turbulence was made by Reynolds (1895), who decomposed the velocity field 
into mean and pulsating components, and actually introduced a multivalued 
velocity field. However, this decomposition brought new unknowns without 
additional governing equations, and that created a closure problem. In Zak 
(1986a,b) it was shown that the Reynolds equations can be obtained by 
referring the Navier-Stokes equations to a rapidly oscillating frame of refer- 
ence, while the Reynolds stresses represent the contribution of inertia forces. 
From these viewpoint the closure has the same status as the proof of Euclid's 
parallel postulate, since the motion of the frame of reference can be chosen 
arbitrarily. In other words, the closure of the Reynolds equations represents 
a case of undecidability in classical mechanics. However, based upon the 
interpretation of the Reynolds stresses as inertia forces, it is reasonable to 
choose the motion of the frame of reference such that the inertia forces 
eliminate the original instability. In other words, the enlarged class of 
functions should be selected such that the solution to the original problem 
in that class of functions will not possess an exponential sensitivity to changes 
in initial conditions. This stabilization principle has been formulated and 
applied to chaotic and turbulent motions (Zak, 1984, 1985, 1986a,b, 1989a). 
As shown there, the motions which are chaotic (or turbulent) in the original 
frame of reference can be represented as a sum of the mean motion and 
rapid fluctuations, while both components are uniquely defined. It is worth 
emphasizing that the amplitude of velocity fluctuation is proportional to the 
degree of the original instability, and therefore the rapid fluctuations can be 
associated with the measure of the uncertainty in the description of the 
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motion. It should be noticed that both mean and fluctuation components 
representing the originally chaotic motion are stable, i.e., they are not sensi- 
tive to changes of initial conditions, and are fully reproducible. 

Thus, chaos as a supersensitivity to initial conditions can be eliminated 
by describing the originally chaotic motion in an enlarged class of functions, 
for instance, by performing a Reynolds-type transformation and applying 
the stabilization principle. Nevertheless, the new deterministic representation 
will still contain an uncertainty coming from the "lack of knowledge" about 
initial conditions. However, this uncertainty has a subjective, rather than 
objective nature: as stressed by Ford (1988), randomness in chaotic motions 
is not an attribute of the dynamics itself, but rather a result of its mathemati- 
cal treatment, i.e., chaos only makes predictions difficult, but not impossible. 
This view on chaos was recently corroborated by da Costa and Doria (1991 ), 
who, based upon Godel's incompleteness theorem, presented a rigorous 
proof of the algorithmic impossibility of deciding whether a given equation 
has chaotic domains or not in the class of elementary functions. Turning 
back to our original problem of unpredictability and irreversibility in 
Newtonian dynamics, one might ask now: are there some additional mathe- 
matical restrictions in Newtonian dynamics which do not have a solid 
enough physical ground? As shown in Zak (1991), there are such restrictions. 
One of them is the Lipschitz condition, which requires that for a dynamical 
system 

fC i = f . ) i (Xl  . . . . .  X n )  , i = 1, 2 . . . . .  n (4) 

all the derivatives 

Ov~ <oz, i , j=  1, 2 . . . . .  n (5) 
Oxj 

must be bounded. 
This condition allows one to describe the Newtonian dynamics within 

the mathematical framework of the classical theory of differential equations, 
which guarantees its reversibility and predictability. That, in turn, leads to 
such effects as infinite time of approaching an attractor, infinite time for 
escape of a repeller if changes in initial conditions are infinitesimal [equations 
(1)-(3)], untractability of two trajectories which originally are very close but 
diverge exponentially, etc. 

Hence, there are variety of phenomena whose explanations cannot be 
based directly upon the classical dynamics: they require in addition some 
words about a scale of observation, very close trajectories, etc. 
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Turning to governing equations of classical dynamics, 

d OL OL OR 
. . . . .  __,  i = 1 , 2 , . .  . , n  (6) 
dt Oqi Oqi Oqi 

where L is the Lagrangian, q and 0; are the generalized coordinates and 
velocity, and R is the dissipation function, one should recall that the structure 
of R(0; . . . .  ,0.) is not prescribed by Newton's laws: some additional 
assumptions are to be made in order to define it. The natural assumption 
(which has been never challenged) is that these functions can be expanded 
in a Taylor series with respect to equilibrium states: 

q; = 0 (7) 

Obviously this requires the existence of the derivative 

c32R 
< ~ at 0 ~  0 (8) 

00; 0~i 

The departure from that condition was proposed in Zak (1992), where 
the following dissipation function was introduced: 

1 a i  r k+ 1 
R = k  +1 ~ ~ ~qj 0j (9) 

in which 

k= p <1, p,>l (10) 
p + 2  

where p is a large, odd number. 
By selecting large p, one can make k close to 1 so that equation (9) is 

almost identical to the classical one (when k=  1) everywhere, excluding a 
small neighborhood of the equilibrium point ~)j = 0, while at this point 

O2R 
--* ~ at 0 j ~ 0  (11) 

0~i d0s 

Hence, the condition (8) is violated; the friction force 

dR 
F,= - - -  (12) 

00~ 

grows sharply at the equilibrium point, and then it gradually approaches its 
classical value. This effect can be interpreted as a mathematical representa- 
tion of a jump from static to kinetic friction. 
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It appears that this small difference between the friction forces at k = 1 
and k < 1 leads to fundamental changes in Newtonian dynamics. 

First, the time of approaching attractors as well as the time of escaping 
repellers becomes theoretically finite. Second, at repellers the solution 
becomes totally unpredictable within the deterministic mathematical 
framework, but it remains fully predictable in the probabilistic sense. In 
contrast to classical chaos, here the randomness is generated by the differen- 
tial operator itself as a result of the failure of uniqueness conditions at the 
equilibrium points. 

This paper is devoted to a discussion of the probabilistic properties of 
terminal dynamics, i.e., dynamics based upon terminal attractors and repel- 
lers where the Lipschitz conditions are violated. Some of these properties 
were already analyzed (Zak, 1988, 1989b,c, 1990a,b, 1991a,b) in connection 
with the modeling of information processing in neurodynamics. In this work 
our attention will be concentrated upon physical aspects of the problem. 

2. FOUNDATIONS OF TERMINAL DYNAMICS 

2.1. Terminal Attractors and Repellers 

Terminal dynamics can be introduced as a set of nonlinear ordinary 
differential equations of the form 

Yc,= o~(xi,  x2 . . . . .  x . ) ,  i =  1, 2 . . . . .  n (13) 

in which 

and k is given by (10). 
Since k < 1, and therefore, 

Ovi <oo (14) 
dxj 

e~i =kok_,(x,. x.) ~v, . . . ,  --*oo if :~i~O 05)  
I Oxjl Ox; 

the Lipschitz condition (5) is violated at all the equilibrium points 

~=o (153 
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As in the classical case, the equilibrium points (I 5') are attractors if the 
real parts of the eigenvalues of the matrix 

t3v; 
m =  ~xj (16) 

are negative, that is, 

Re ~i<0 (17) 

and are repellers if some of the eigenvalues have positive real parts. 
In order to emphasize the  difference between classical and terminal 

equilibrium points, we will start with the simplest terminal dynamical 
system: 

Jc= - x  1/3 (18) 

This equation has an equilibrium point at x = 0 at which the Lipschitz 
condition (5) is violated: 

d~ 
- -  1 X - 2 / 3 - 4 " - - 0 0  at x -~0  (19) 

dx 

Since here the condition (17) is satisfied 

Re 2 ~ - oo < 0 (20) 

this point is an attractor of "infinite" stability. 
The relaxation time for a solution with the initial condition x = x o  <0 

to this attractor is finite: 

= -  ~x-.o dx 
to 'Jxo x~73 = 23-~/3 < ~176 (21) 

Consequently, this attractor becomes terminal. It represents a singular 
solution which is intersected by all the attracted transients (Figures 1 
and 2). 

x ! 
| 'c - 0 - nEGUI.J~ R A ' I - r r l A C T O R  
/ 

X I  " 

x 2 

Fig. L Convergence to a regular attractor, x = 0; h, t2, h -* oo. 
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x !  

0 - TERMINAL A'I-rRACTO!R. 

x 2 

" ~ \ \  ~-i " ~  
-. \ 

k = • k > 0  

t 

X 

Fig. 2. Convergence to a terminal attractor. Top: x=0.  Bottom: 2=4-x *, k>0. 

For the equation 

2 = x  113 (22) 

the equilibrium point x = 0 becomes a terminal repeller: 

d2 J -2/3 
- - - - . ~ x  ~ o e  at x ~ 0 ,  i.e., R e ; ~ - . o e > 0  (23) 
dx 

If the initial condition is infinitely close to this repeller, the transient 
solution will escape the repeller during a finite time period: 

f ~o dx - -  3 ~ 2 / 3  / 

to = xl/3-2. .o - . ~  if x < o o  (24) 
~ 0  

while for a regular repeller, the time would be infinite [see equation (3)]. 
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Instead of  equations (18) and (22), one can consider a more general 
case: 

= 4-x k, k > 0 (25) 

for which the relaxation time (for the attractor) or the escaping time (for 
the repeller) is 

{ ~ ov if k >  1 
to 1 - k  (26) 

--xo / ( l - k )  if k < l  

As shown in the theory of differential equations, singular solutions in 
the equations 

F(x,  y, y') = 0 (27) 

are found by eliminating y' from the system: 

OF 
F(x,  y, y') = 0, - -  = 0 (28) Oy' 

Hence, static terminal attractors [if they exist in equation (27)] must be 
among the solutions to the system (28). 

2.2. Static Terminal Attractors with Terminal Trajectories 

As shown in nonlinear dynamics, different types of regular attractors 
(or repellers) can be introduced based on the second-order dynamical system 
linearized with respect to the origin x = 0 ,  y = 0 :  

Yc = ax  + by (29) 

.~= cx + dy 

o r  

dx _ ax  + by (30) 
dy cx + dy 

Depending upon the eigenvalues of the matrix 

the attractors (or repellers) x = O, y = 0 can be a node, a star, a spiral point, 
or an improper node. 
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If  instead of equation (30) one introduces the following system: 

Yc = (ax + by) 1/3 
(32) 

= (cx + @)1/3 

Then the equilibrium point x = 0, y = 0 represents a terminal attractor (or 
repeller): the Lipschitz condition is violated at this point. Nevertheless, the 
differential equation of trajectories in configuration space x, y: 

dx _ (ax + byl  ' /3 
dy \ c ~ y ]  (33) 

satisfies the Lipschitz condition and it does not have any singular solutions. 
This means that both variables x and y are "simultaneously" approaching 
the terminal attractor, as in the case of a regular attractor [see equation 
(30)]. Moreover, a similar classification of terminal attractors of the type 
(32) can be performed, based upon the coefficients a, b, c, and d. 

This section introduces a more "pathological" situation, when for the 
differential equations of trajectories in configuration space, the Lipschitz 
condition is also violated. As will be shown below, such a violation will lead 
to the loss of the uniqueness of the solutions in the configuration space: the 
trajectories will merge before approaching the terminal attractor. 

Let us start with the following dynamical system: 

2 = - ( x -  x*) I/3 (34) 

= [ y ( x -  x*)] '/3 (35) 

It is easily verifiable that the Lipschitz condition here is violated at x = x*, 
y = 0. The differential equation of the trajectories in configuration space x, y 
can be written as 

dv 
- - :_  . I/3 (36) - - - - - - y  

dx 

For this equation, the Lipschitz condition is violated at y =  0. This 
means that y = 0 is a singular solution, and all the trajectories in configura- 
tion space x , y  first flow to the x-axis, i.e., y = 0 ,  and then approach the 
terminal attractor x = x*, y = 0 together (Figure 3). 

Indeed, it follows from equation (36) that 

{(oyg/ 
3 -  ~x) 3/2 for = t- 3_. 2/3 

-~ -'- 2>'o (37) 
Y = for ~ .~. 3 , 2 / 3  

- ~ / - - - 2 Y O  
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o | 
X ~ 

Fig. 3. Terminal  t rajectory y=O. 

while x=x( t )  follows from equation (34): 

fx* + [(xo-  x * )  2/3 - ] t]  
x = ~0 

f o r  t ~ 3 ( X o - X * )  2/3 

for t>_~(Xo--X*) 2/3 (38) 

Here xo and Y0 are the initial conditions. 
The time of approaching the singular solution y = 0 by the variable y 

follows from equation (37) if x(t) is substituted from equation (38): 

t, =�89 z/3 (39) 

The time t~ of convergence of the solution to the terminal attractor 
follows from equation (38): 

t2 ----- 3[(X0 - -  X * )  2/3 - -  (322/3 -- X*)2131 " ' "  (40) 

Obviously 

t2<q (41) 

This means that the trajectory of the motion of the original dynamical 
system (34), (35) in the configuration space x, y first flows ino the trajectory 
y =  0, and only then does it approach the terminal attractor x=x*,  y= O. 
Such a trajectory as y = 0 we will call a terminal trajectory. 

The situation described above can be generalized to the case where a 
terminal trajectory is a prescribed curve. Indeed, turning again to the system 
(34), (35), let us transfer to a new system of coordinates 

x=Oi ,  y=f (Oj ,  02) (42) 

assuming that f is a differentiable function, and t3f/OO z ~ O. 
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02 

Fig. 4. Terminal trajectory y =f(x). 

Then equations (34) and (35) read 

~, = - ( , 9 , - 0 * )  '/3 (43) 

Of/&9~ (~j - ~*)1/3 I/3 + �9 �9 �9 (44) 

The terminal trajectory y = 0 is converted into a curve: 

f(~9,, ~92) = 0 (45) 

Hence, for a desired terminal trajectory (45), the corresponding dynam- 
ical system is (43), (44) (Figure 4). 

2.3. Physical Interpretation of Terminal Attractors 

As pointed out in the Introduction, the mathematical formalism of 
terminal dynamics follows from a more general structure of the dissipation 
function which allows the existence of smooth transitions from static to 
kinetic friction. It should be emphasized that the behavior of the solutions 
around the equilibrium points in terminal dynamics is more "realistic" than 
in the classical dynamics since the actual time of convergence to equilibrium 
points is finite. However, in order to make it finite, one has to violate 
the Lipschitz condition (5) since all the trajectories must intersect at the 
equilibrium point (Figure 2). In classical dynamics the Lipschitz condition 
(5) is not violated, and the infinite time of convergence is accounted for by 
some "small dissipative forces" which are always present. Actually terminal 
dynamics incorporates these forces via the parameter k [see equation (10)] 
which can be found from measurement of the convergence time [see 
equation (26)]. 
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Terminal effects in fluid dynamics and their relevance to theory of turbu- 
lence were discussed in Zak (1992). It can be shown that the terminal attrac- 
tor as a mathematical concept has other physical interpretations, and one 
of them is the energy-cumulation effect, although in this case one deals with 
the finite time of convergence of a propagating wave rather than the motion 
of an individual particle. 

As an example, consider the propagation of an isolated pulse in an 
elastic continuum along the x axis. In general, the speed of propagation s = 

depends on x. Suppose there exists such a point x* where ~. (x*) = 0. Then 
the time t* during which the leading front of the propagating pulse will 
approach this point is expressed via the following integral: 

fx-,~* dx  t*=j ,  ~ (46) 

If ~ can be presented in the form 

= (x* - x) k, 0 < k < 1 (47) 

then this integral converges and, therefore, the time t* is finite. It is easily 
verifiable that in this case the differential equation 

= (x* - x )  k (48) 

describing the dynamics of the pulse propagation has a terminal attractor 
at x = x*. But if the leading and the trailing fronts of the propagating pulse 
approach the same point x* during a finite time, then eventually the width 
of the pulse will shrink to zero, and all the energy transported by the pulse 
will be distributed over a vanishingly small length. Hence, the existence of 
a terminal attractor in such models leads to an unbounded concentration of 
energy in the neighborhood of the attractor. 

Based upon this model, Zak (1970, 1982c, 1983) explained and 
described the formation of a supersonic snap at the free end of a filament 
suspended in a gravity and a centrifugal force field, as well as the cumulation 
of the shear strain energy at the soil surface in response to an underground 
explosion. In these models, the free end of the filament and the free surface 
of the soil serve as terminal attractors. 

Some terminal effects in fluid dynamics were introduced and discussed 
in Zak (1992). 

2.4. Periodic Terminal Limit Sets 

So far, this paper has concentrated on static terminal attractors. I will 
now demonstrate the existence of periodic terminal attractors. For that 
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purpose, let us consider a dynamical system separable in polar coordinates 
r, 0: 

i ' = r ( R - r )  ~/3, r < R  (49) 

0 = co (50) 

Here, d: /dr  ~ - ~  at r ~ R [compare with equation (19)] and therefore 
the solution r =  R, 0 = cot+ 0o is a terminal limit cycle. Its basin is defined 
by the condition r > 0. For the solution with the initial condition r0 < R the 
relaxation time is finite: 

fr R dr fr R dr 2 ( R - r o ) 2 / 3 < o o  (51) 
to= o r (R--r ) l /3  < o r~176 

It is easily verifiable that a periodic terminal repeller can be obtained 
by changing the sign in the right-hand side of  equation (49). 

The terminal analog of  chaotic attractor was introduced and discussed 
in Zak (1991 a). 

2.5. Unpredictability in Terminal Dynamics 

The concept of  unpredictability in classical dynamics was introduced in 
connection with the discovery of  chaotic motions in nonlinear systems. Such 
motions are caused by the Lyapunov instability, which is characterized by a 
violation of  the continuous dependence of  solutions on the initial conditions 
during an unbounded time interval (t ---, ~ ) .  That is why the unpredictability 
in these systems develops gradually. Indeed, if two initially close trajectories 
diverge exponentially, 

e = eo exp ;tt, 0 < ;~ < ~ (52) 

then for an infinitesimal initial distance e0 ~ 0 ,  the current distance e 
becomes finite only at t ~ oo. For this reason, the Lyapunov exponents (the 
mean exponential rate of  divergence) are defined in an unbounded time 
interval: 

tr =l im (1 / In  e- ,  t - -  to (53) 
\ t /  20 

In distributed dynamical systems, described by partial differential equa- 
tions, there exists a stronger instability discovered by Hadamard. In the 
course of  this instability, a continuous dependence of  a solution on the initial 
conditions is violated during an arbitrarily small time period. Such a blowup 
instability is caused by a failure of  hyperbolicity and transition to ellipticity 
(Zak, 1982a-c). 
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This section will show that a similar type of blowup instability leading 
to "discrete pulses" of unpredictability can occur in dynamical systems which 
contain terminal repellers (Zak, 1989b). 

Let us analyze the transient escape from the terminal repeller in the 
equation 

= x 1/3, :Co = x(0) (54) 

assuming that [Xo[ ~ 0. The solution to equation (4) reduces to 

X = "4-I 3/2, x ~ O  (55) 

Hence, two different solutions are possible for "almost the same" initial 
conditions [compare to equation (3)]. The most essential property of this 
result is that the divergence of the solutions (55) is characterized by an 
unbounded parameter which can be associated with a terminal version of 
the Lyapunov exponent: 

2/'3/2 / = 
tr = lim (1 In o% 

,~,0 \ t  2Ix01/ 
Ixol ~ 0 (56) 

where to is an arbitrarily small (but finite) positive quantity. In contrast to 
equation (36), here the terminal Lyapunov exponent can be defined in an 
arbitrarily small time interval, since during this interval the initial infinite- 
simal distance between the solutions becomes finite. Thus, a terminal repeller 
represents a vanishingly short but infinitely powerful "pulse of unpre- 
dictability" which is "pumped" into the dynamical system. 

In order to illustrate the unpredictability in such a non-Lipschitzian 
dynamics, we turn to the following equation: 

. ~ - - y x  1/3 = 0 (57) 

while 

y=cos  ~ t  (58) 

Assuming that x --* 0 at t ~ 0, one obtains regular solutions 

x =  4-(~--~ sin (ot) 3/2, x:fi0 (59) 

and a singular solution (an equilibrium point) 

x=O (60) 
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During the first time period 

7E 
0 < t < - -  (61) 

2o9 

the equilibrium point (60) is a terminal repeller (since y >  0). Therefore, 
within this period, the solutions (59) have the same property as the solutions 
(55) : their divergence is characterized by an unbounded Lyapunov exponent. 

During the next time period 

~r 3~r 
- - < t < - -  
2o9 26o 

the equilibrium point (60) becomes a terminal attractor (since y < 0), and 
the system which approaches this attractor at t =  7ro9 remains motionless 
until t > 31r/2o9. After that, the terminal attractor converts into the terminal 
repeller, and the system escapes again, etc. 

It is important to notice that each time the system escapes the terminal 
repeller, the solution splits into two symmetric branches, so that the total 
trajectory can be combined from 2 n pieces, where n is the number of cycles, 
i.e., it is the integer part of the quantity (t/2rcog). As one can see, here the 
nature of the unpredictability is significantly different from the unpre- 
dictability in chaotic systems. 

One can notice that the motion (59) resembles chaotic oscillations 
known from classical dynamics: it combines random characteristics with the 
attraction to a center. However, in contrast to classical chaos, the motion 
(59) is driven by the failure of the uniqueness of the solution at the equilib- 
rium point, and it has a well-organized probabilistic structure. Since the time 
of approaching the equilibrium point x = 0 by the solution (59) is finite, this 
type of chaos can be called terminal (Zak, 1991a, 1992). 

2.6. Irreversibility of Terminal Dynamics 

Classical dynamics describe processes in which time t plays the role of 
a parameter: it remains fully reversible in the sense that the time-backward 
motion can be obtained from the governing equation by time inversion, 
t--, - t .  This means that classical dynamics cannot explain the emergence of 
new dynamical patterns in nature. 

However, there exists another class of phenomena where past and future 
play different roles, and time is not invertible: by definition (the second 
law of thermodynamics) irreversibility is introduced in thermodynamics by 
postulating the increase of entropy. 

As stressed by Prigogine (1980), irreversible processes play a fundamen- 
tal constructive role in the physical world; they are at the basis of important 
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coherent processes that appear with particular clarity on the biological level. 
In this connection let us compare the dynamical behavior of solutions 

in small neighborhoods of classical and terminal repellers: 

2 = x  (62) 

and 

2 = x  1/3 (63) 

The solution to equation (62), 

x+ = x0 e' (64) 

describing an escape from a classical repeller is reversible since 

u_ =x0 e-' (65) 

is a possible motion describing the convergence to a classical attractor 
X : 0 .  

The solution to equation (63) 

x + = ~ )  3 (66) 

is irreversible since the time-backward motion 

x _ = ~  (67) 

does not exist (x has imaginary value). 
This mathematical formalism expresses the deeper roots of irrevers- 

ibility of terminal dynamics, which can be understood if one turns to the 
solution of dynamics (57), (58). This solution consists of regular (59) and 
singular (60) parts. When the regular solution approaches the equilibrium 
point x = 0 (in finite time), it switches to the singular solution x---0, and this 
switch is irreversible. 

3. PROBABILISTIC STRUCTURE OF TERMINAL DYNAMICS 

As shown in Zak (1992), the terminal version of Newtonian dynamics 
is different from its classical version only within vanishingly small neighbor- 
hoods of equilibrium states, and therefore it contains classical mechanics as 
a special case. This means that terminal dynamics is not necessarily always 
unpredictable and irreversible: in some domains it is identical with the class- 
ical dynamics. However, in this section our attention will be concentrated 
on specific effects of terminal dynamics, and in particular, on its probabilistic 
structure. 

One should emphasize again the fundamental difference between prob- 
abilistic properties of terminal dynamics and those of stochastic or chaotic 
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differential equations. Indeed, the randomness of stochastic differential equa- 
tions is caused by random initial conditions, random forces, or random 
coefficients; in chaotic equations small (but finite!) random changes of initial 
conditions are amplified by the mechanism of instability. But in both cases 
the differential operator itself remains deterministic. In contrast, in terminal 
dynamics randomness results from the violation of the uniqueness of the 
solution at equilibrium points, and therefore the differential operator itself 
generates random solutions. 

3.1. Terminal Version of  Liouville--Gibbs Theorem 

The Liouville-Gibbs theorem in classical dynamics expresses the rela- 
tionship between the governing differential equations and equations for 
probability distribution functions. For the dynamical system 

X i =  l ) i (X l ,  X2 ,  �9 � 9  Xn) ,  i= 1, 2 . . . . .  n 

it has two equivalent forms: 

(68) 

Of 
~-+ div(fo~) = 0 (69) Ot 

o r  

f=fo exp(- fotdiv vidt) (70) 

Here xi are considered as random variables, while randomness is intro- 
duced only through initial conditions x ~ possessing a given joint distribution 
with the joint density j~, and f is the current joint distribution. Since the 
operator vi is deterministic, the system (68) can be solved in a deterministic 
way, and to make the solution vector x a random vector, it suffices to treat 
the initial conditions as random variables. 

It should be recalled that equations (69) and (70) were derived for the 
case when the Lipschitz conditions are satisfied, i.e., 

- -  <o% i , j =  1, 2 . . . . .  n (71) 
0xj 

which means that 

Of)i 
- -  < ~ ,  i , j =  1, 2 . . . . .  n (72) Oxj 
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For the terminal dynamics given by equations (13) these conditions do 
not hold [see equation (15)]. In addition, one can verify that 

, = ,  Ov, v~- ' Idivv'l=k ~ ~x~ ~ if ~ j ~ 0  (73) 

i.e., Idiv v;l is unbounded at equilibrium points. 
This means that equations (69) and (70) are valid everywhere, excluding 

the equilibrium points :tj= 0. 
In order to define the distribution f at ~j=0, we first evaluate the 

functions 

xi=xi(t) at x i~x i=O (74) 

where x; are the coordinates of an equilibrium point. 
For simplicity (but without loss of generality) we assume that 

~ci = 0 (75) 

Then 

where 

:r k at xi~O, xj~=O (76) 

Ol)i 
a i -  at xi=O, x 2 = 0 , . . . ,  x , = 0  (77) 

Oxi 

Let us assume first that 

ai>O (78) 

i.e., the equilibrium point (75) is a terminal repeller. Then in a small neigh- 
borhood of this point 

x i~ t  I/(1-k) at x i~O (79) 

and therefore 

i 1 
div v i~k Z (aixi) k - l ~ -  at x i~O (80) 

i t 

Hence 

fOr It ~0 s -"~ 0 
- divvidt= divvidt, .dn - -  at Xi"-~O (81) 

t 
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i .e . ,  

(;0 / "'~ exp - div oi dt ... ~ 0 at xi ~ 0 (82) 
t 

Therefore, it follows from (70) that 

f ~ 0  at x i ~ O  if f0<oo (83) 

This means that those trajectories which originated outside of  the termi- 
nal repeller will never approach it; it follows from (83) that the terminal 
repeller generates probability even if the initial conditions are "almost" 
deterministic. In other words, it represents a "vacuum" of the probability 
density. 

For a terminal attractor, i.e., when 

ai < 0 (84) 

after following transformations similar to those performed in (79)-(82), one 
obtains 

f ~  oo at x i ~ O  (85) 

Hence, those trajectories which originated outside of the terminal attrac- 
tor will definitely approach it, i.e., the terminal attractor represents a center 
of concentration of all the probability "mass." 

3.2. Terminal Model of Random Walk 

A random walk is a stochastic process where changes occur only at fixed 
times. In this section we introduce the terminal dynamics which describes this 
process. 

Let us start with the following dynamical system: 

.~ = 7 / s i n  I /3  "Vfmx sin cot, y = const, co = const, a = const (86) 
a 

It can be verified that at the equilibrium points 

7~mot 
m . . . .  , -2 ,  -1 ,  O, 1, 2 . . . .  (87) X m -  r ' - "  , 

x/co 

the Lipschitz condition is violated: 

c3.~/8x ---, oo at x ---, Xm (88) 
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If  x = 0 at t = 0, then during the first period 

0 < t < ~r/co (89) 

the point Xo = 0 is a terminal repeller since sin cot > 0 and the solution at this 
point splits into two (positive and negative) branches whose divergence is 
characterized by an unbounded terminal Lyapunov exponent [see equation 
(56)]. Consequently, with an equal probability, x can move into the positive 
or the negative direction. For the sake of concreteness, we will assume that 
it moves in the positive direction. Then the solution will approach the second 
equilibrium point xl = rca/x/--~ at 

[ B(], �89 a x / ~ ] 2 1 / 3  7 "J t* = 1 co arccos 1 (90) 

in which B is the beta function. 
It can be verified that the point xl will be a terminal attractor at 

t = tl if 

tl<--,co i.e., if a -  24/3 ~ (91) 

Therefore, x will remain at the point x~ until it becomes a terminal 
repeller, i.e., until t > h .  Then the solution splits again: one of two possible 
branches approaches the next equilibrium point XE=21rot/x/r~, while the 
other returns to the point x0 = 0, etc. The periods of transition from one 
equilibrium point to another are all the same and are given by equation (90) 
(Figure 5). 

i 

- ~  11 ~" ~'~\ 

\ / 

/ \ /  ' ,  
\,,_/Z 

Fig. 5. Oscillations about the attractor ~ = 0, 
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It is important to notice that these periods t* are bounded only because 
of  the failure of  the Lipschitz condition at the equilibrium points. Otherwise 
they would be unbounded, since the time of  approaching a regular attractor 
(as well as the time of  escaping a regular repeller) is infinite. 

Thus, the evolution of  x prescribed by equation (86) is totally unpre- 
dictable: it has 2 m different scenarios, where m =E(t/ t*)  (Figure 6), while 
any prescribed value of  x from equation (87) will appear eventually. This 
evolution is identical to a random walk, and the probability f ( x ,  t) is gov- 
erned by the following difference equation: 

f ( x ,  7c~ , [ ~ra "~ , [ ira t) t + ~ ) = i f ~ x - - - ~ , t ) + i f ~ x + - ~ ,  (92) 

For better physical interpretation we will assume that 

x/~<<L, t* ,~ T, i.e., co ~ ~ (93) 

in which L and T are the total length and the total time period of  the random 
walk, respectively. Setting 

/ra 
0, t* ~ 0 (94) 

one arrives at the Fokker-Planck equation: 

Of(x, t) = I D 2 02f( x, t) D 2 = ira z (95) 
at Ox 2 ' 

1 N=2n 

A A A CA A A 

Fig. 6. Unpredictable system. 
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Its unrestricted solution for the initial condition that the random walk 
starts from the origin x = 0 at t = 0, 

( x2) f ( x ,  t) = 1 - ~ t  exp (96) 

qualitatively describes the evolution of the probability distribution for the 
dynamical equation (86). It is worth noticing that for the exact solution one 
should turn to the difference equation (92), since actually co < oo. 

3.3. Probabilistic Attractors in Terminal Dynamics 

In this section we describe a new dynamical effect--an attraction 
with a certain probability to a point. For this purpose we slightly modify 
equation (86) : 

Yc=Tr sink[X/-dy(x) ] sin cot (97) 
L a d  

assuming that 

Y' = ~x > fl > O, fl = const (98) 

and 

1 
k = - -  n ~ oo ( 9 9 )  

2n+ 1' 

where n is an integer. 
This replacement does not change the qualitative behavior of the 

dynamical system (97): it changes only its quantitative behavior between the 
critical points in such a way that one has explicit control over the period of 
transition from one critical point to another. Indeed, since 

lim ~--,,~o~inl/2n + 1 X = sgn sin X (100) 

one obtains the solution for x which is valid between critical points x e") 
and x ( '+ 1) : 

x = - -  (1 - cos cot) (101) 
co 
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Obviously the distances between the equilibrium points will depend 

i.e., 

For large (but bounded) co, the continuous approximation of 
equation (95) 

r>coh,., m = 1, 2 . . . .  (104) 

since it should not exceed the period between the conversions of terminal 
attractors into terminal repellers and vice versa. 

Now instead of equation (92) one obtains 

f ( x ,  t +-~)=O.5f(x-hm, t) +O.5f(x + hm, t) (105) 

in which h,, is given by equation (102). 
Introducing a new variable y(x) and substituting it into equation (97), 

2) = --y sink ~ Y sin co t (106) y' a 

one reduces equation (105) to the form of (92) : 

Of(y, t) 02 _�89 f (y , t )  D2=za2 (108) 
Ot Oy 2 ' 

describes qualitatively the random walk (97) 

f (y ,  t) = ~ exp - ~-~ (109) 

upon the step m: 

, {zam'~ _, {za(m - 1)) 
h, , ,=x, .-x, .- ,=y - ~ - -~ - ) - y  ~ - -~  ) (102) 

where y-l(x) is the inverse of y(x). 
The period of transition from the ( m -  1)th to the ruth critical point 

follows from ( 101) and (102) : 

t* = 1 arccos (1 - h-v-m/< ~ (103) 
co \ )'/--co 
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or, after returning to the old variable x, 

f ( x ,  t )=  ly'(x)l ex [- Y2(X)-] PL- 2- J 
Let us assume that 

y =  zn+l XV/'~ 1 , n "", ~ 

Then 

and therefore 

183 

(110) 

( l l l )  

[y'(x)[ ---, ov if x ~ l  (112) 

f ~  6 ( x -  1) at t ~ o v  (113) 

Hence, the solution to the dynamical equation (97) is a random function 
which is attracted to the point x = 1 with the probability 

p - ~ l  at t ~ o v  (114) 

irrespective of  the initial probability distribution. 
That is why such a point can be called a probabilistic attractor in 

terminal dynamics. 

3.4. Guided Systems and Stochastic Attractors 

Turning to equation (86), let us assume that this dynamical system is 
driven by a vanishingly small input e(t)" 

~ = T s i n l / 3 ~ x s i n o t + e ( t ) ,  le(t)l<<y (115) 
Ot 

This input can be ignored when :~ # 0, or when :? = 0, but the system is 
stable, i.e., x =  lra /x/-~, 3na /x/~, . . . .  

However, it becomes significant during the instances of  instability when 
:~ = 0 at x = 0, 27r/v/~, etc. Since actually a vanishingly small noise is always 
present, one can interpret the unpredictability discussed above as a conse- 
quence of  small random inputs to which the dynamical system (115) is 
extremely sensitive. 

However, the function e(t)<<8 is not necessarily random: it can be 
associated with a device which controls the behavior of the dynamical system 
(86) through a string of  signs. Indeed, the only important part in this point 
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is the sign of e(t) at the critical points. Consider, for example, equation 
(115), and suppose that 

sgn ~(t,.) = +, +, - ,  +, - ,  - ,  etc. 
~ m  

at t ~ -  , m = l , 2  . . . .  (116) 

The values of e(t) in between the critical points are not important since, 
by our assumption, they are small in comparison to values of the derivative 
~, and therefore can be ignored. Hence, the only part of the input e(t) which 
is significant in determining the solution to equation (115) is the sign of the 
string (116): specification of this string fully determines the dynamics of 
(115). Figure 7 demonstrates three different scenarios of motion for different 
strings. Such guided terminal dynamical systems were introduced and ana- 
lyzed in Zak (1989d, 1990a,b, 1991 a). In this paper we discuss more complex 
dynamical systems when the string (116) is undetermined in some critical 
points. We assume that 

e(t) =eoax, eo ~ 0 (117) 

To __. I-1 

J_L ,, 0vr6~-.2 
0J 

4, § 2 4 7  §  § § § 2 4 7  + ~ - -  4 " §  § 2 4 7  § 2 4 7  § §  

�9 --6- -- q-~" 

0 A _ . 

l 

� 9 2 4 7 2 4 7 2 4 7 2 4 7  

Fig. 7. T e m p o r a l  pa t t e rns  and  the i r  codes. 
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where 

=0  if l < x < - I  
a <0  if x = l  (118) 

>0 if x = - I  

The conditions (118) can be implemented via the additional terminal 
dynamical system 

d = a l / 3 ( x  - 1)(x+ 1) - eoa, e0 ~ 0  (119) 

Indeed, equation (119) has a terminal equilibrium point 

a = 0  (120) 

which is a terminal attractor if 

- l < x < l  (121) 

and it is a terminal repeller otherwise. One can also verify that the solution 
escapes the terminal repeller such that 

a < 0  if x =  1 
(122) 

a > 0  if x = - I  

Hence, the dynamical system (119) fully implements the condi- 
tions (118). 

Now let us return to equation (115) supplemented by equations (117) 
and (119). Within the domain (121) the solution describes a random walk 
governed by equation (92) or by its continuous approximation (95), and it 
is fully reflected from the boundaries x = x l  and x = x 2 .  Indeed, it follows 
from equation (122) that 

sgn e(t) ={+  atat X=lx = - 1  (123) 

Hence, one arrives at a restricted random walk with boundary 
conditions 

The solution to 
(124) at t ~ m is 

of  x=l =& =0 (124) 

equation (95) subject to the boundary conditions 

f ( x )  =0.5, -1  < x <  1 (125) 

i.e., with the same probability the solution will visit all the critical points 
within the domain (121). 
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Modifying equation (115) in the same way as in the previous section 
by introducing the new variable y=y(x) 

5c=y sinkI~a Y(X)] sin tot+ e(t), Je(t)l<< y (126) 

with the supplemental equations 

e(t) = eoay, (t=al/3(y - 1)(y + 1) - eoa (127) 

one arrives at the following probability distribution instead of (125): 

f(x) = 0.51y'(x)l, y ( -1)  < x<y(1)  (128) 

The solution (128) represents a stationary stochastic process which is 
an attractor of the dynamical system (115). 

3.5. Multidimensional Systems 

The results presented in the previous sections can be generalized to 
multidimensional dynamics. 

We start with the following terminal dynamical system: 

5ci=yisink(~Tvxj)sinogt, Tu = Tji, i , j=  1, 2 (129) 

assuming that IT~I is a positive-definite matrix, i.e., 

T~I >0, I Tll T12 >0 (130) 
I Tn T22 

Here k is defined by equation (99). The property (130) provides stability 
(if sin o9 t < 0) or instability (if sin to t > 0) of the system (129) at the terminal 
equilibrium points: 

m2 * :12 
~ral ml TI2, ~ra2 ]Tll = Tll TI2 

X2 = - -  ' TI2 T22 ~'--A-~ T,~ A,/~ I r,2 A (131) 

Here m~ is the number of steps made by the variable x~. The coordination 
between the period of transition t* from one critical point to another and 
the period between the conversions of terminal attractors into terminal repel- 
lers are provided by the condition 

yi >- ogxi, i= 1, 2 (132) 
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The system (129) describes a two-dimensional random walk, and the 
joint density function f ( x l ,  x2, t) is governed by the following difference 
equation: 

4f(x , ,x2 ,  t+~)=f(x+h, , , x2+h22,  t )+f(x~-h,2 ,x2-h2,)  (133) 

+ f(x l  - h12, x2 + h2,) + f (x l  - hi l, x2 - h22) 

or by its continuous approximation 

t oxf Ox, Ox2* Ox ) (134) 

where 

2 2 2 2 DI1 = ~ (aj T22 + azTlz) 

D,2 = ~ (a~T22 + a22T, i) 
A 

I'C 2 2 2 2 
D22 = - ~  (a2Ti l  + ~/IT12) 

hll = ~  (a l  T22-  a2T12), 

h 12 = ~ - - ~  (6,7"22 + a2T,2), 

K 
h21 = - - ~  (a2Tll + a l Tl2) 

/r 
h22 = ~ - - ~  (~2TI1- tZl TI2) 

As the one-dimensional case, the effect of probabilistic attraction can 

assuming that y; satisfies the condition (98). 
Indeed, the point with the largest components lY'( ~ )l will attract (in the 

probabilistic sense) the solution to equations (129) in the same way as 
described by equations (110)-(114). 

(135) 

be incorporated into terminal dynamics by the introduction of new variables 
in equation (129)" 
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The guided version of equation (135) can be represented as 

2i=7~sink[-~i y~ (~i)lsin cot+ei(t), ~,=~, To.x j 
J 

where 

(136) 

ei(t)= eo ~,ao.x j, ~o--,0 (137) 
J 

As in the one-dimensional case (117), the coefficients a U can be given 
by inequalities of the type (118) by means of additional terminal dynamics 
of the type (119). This will lead to a multidimensional random walk restricted 
by reflecting boundaries, while the limiting form of the solution at t ~ 
represents a stationary stochastic attractor of the dynamical system (135). 

Thus, there are two kinds of coupling between the variables x; in the 
terminal dynamics (136): the coefficients T o. carry out a probabilistic cou- 
pling via the joint density distribution, while the coefficients a~ perform a 
deterministic, but "qualitative" rather than quantitative coupling [since only 
the sign of ei(t) at the terminal equilibrium points is important]. 

4. CONCLUSION 

One of the major flaws in Newtonian dynamics is its determinism and 
reversibility, which makes it impossible to explain the emergence of new 
dynamical patterns in nature in the way in which nonequilibrium thermo- 
dynamics does. However, in our view, both of these characteristics are attri- 
butes of the mathematical models of Newtonian dynamics rather than 
Newton's laws themselves. Indeed, these models require some additional 
restrictions for the sake of mathematical convenience, and some of them are 
not always consistent with the physical nature of the motion. One such 
restriction is the Lipschitz condition (which is responsible for the determin- 
ism and reversibility of Newtonian dynamics). Indeed, all real physical sys- 
tems approach their equilibria in a finite time. That can occur only due to 
static friction, which does not vanish with the velocity. In mathematical 
language, this means that the Lipschitz condition at these points is violated. 

In this paper a new mathematical model for Newtonian dynamics--the 
terminal dynamics---is introduced and analyzed. This model reshapes the 
dissipation function in such a way that the time of approaching equilibrium 
points becomes theoretically finite due to the violation of the Lipschitz condi- 
tion. As a "side effect" of this property, terminal dynamics becomes irrevers- 
ible and probabilistic. 
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The paper discusses the foundations and probabilistic structure of 
terminal dynamics, and, in particular, a new phenomenon--a probabilistic 
dynamical attractor. 

One of the most significant properties of terminal dynamics is that it 
can impose upon its variables several types of nonrigid constraints such as 
probabilistic coupling via the joint density, or "qualitative" coupling via the 
sign of certain combinations of variables. Both of these constraints are very 
pronounced in biological and social systems, which are characterized by the 
possibility of emergence of new dynamical patterns. 

Thus, terminal dynamics can become a powerful mathematical tool for 
modeling irreversible and nondeterministic processes in nature. At the same 
time it allows us to reevaluate our view on such random phenomena as 
turbulence and chaos. 
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